在正式开始之前,先来思考一个问题:假设我们想要从文件读取数据,如果失败,你有没有好的办法通知调用者为何失败?如果成功,你有没有好的办法把读取的结果返还给调用者?
上面的问题在真实场景会经常遇到,其实处理起来挺复杂的,让我们先做一个假设:文件读取操作发生在系统启动阶段。那么可以轻易得出一个结论,一旦文件读取失败,那么系统启动也将失败,这意味着该失败是不可恢复的错误,无论是因为文件不存在还是操作系统硬盘的问题,这些只是错误的原因不同,但是归根到底都是不可恢复的错误(梳理清楚当前场景的错误类型非常重要)。
对于这些严重到影响程序运行的错误,触发 panic 是很好的解决方式。
在 Rust 中触发 panic 有两种方式:被动触发和主动调用,下面依次来看看。
先来看一段简单又熟悉的代码:
fn main() {
let v = vec![1, 2, 3];
v[99];
}
这里发生了严重的错误 —— 数组访问越界,在其它编程语言中无一例外,都会报出严重的异常,甚至导致程序直接崩溃关闭。
而 Rust 也不例外,运行后将看到如下报错:
$ cargo run
Running `target/debug/panic`
thread 'main' panicked at 'index out of bounds: the len is 3 but the index is 99', src/main.rs:4:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
上面给出了非常详细的报错信息,包含了具体的异常描述以及发生的位置,甚至你还可以加入额外的命令来看到异常发生时的堆栈信息,这个会在后面详细展开。
总之,类似的 panic 还有很多,而被动触发的 panic 是我们日常开发中最常遇到的,这也是 Rust 给我们的一种保护,毕竟错误只有抛出来,才有可能被处理,否则只会偷偷隐藏起来,寻觅时机给你致命一击。
在某些特殊场景中,开发者想要主动抛出一个异常,例如开头提到的在系统启动阶段读取文件失败。
对此,Rust 为我们提供了 panic! 宏,当调用执行该宏时,程序会打印出一个错误信息,展开报错点往前的函数调用堆栈,最后退出程序。
切记,一定是不可恢复的错误,才调用 panic! 处理,你总不想系统仅仅因为用户随便传入一个非法参数就崩溃吧?所以,只有当你不知道该如何处理时,再去调用 panic!.
首先,来调用一下 panic!,这里使用了最简单的代码实现,实际上你在程序的任何地方都可以这样调用:
fn main() {
panic!("crash and burn");
}
运行后输出:
thread 'main' panicked at 'crash and burn', src/main.rs:2:5 ...
main 函数所在的线程崩溃了,发生的代码位置是 src/main.rs 中的第 2 行第 5 个字符(包含该行前面的空字符)。
在真实场景中,错误往往涉及到很长的调用链甚至会深入第三方库,如果没有栈展开技术,错误将难以跟踪处理,下面我们来看一个真实的崩溃例子:
fn main() {
let v = vec![1, 2, 3];
v[99];
}
上面的代码很简单,数组只有 3 个元素,我们却尝试去访问它的第 100 号元素(数组索引从 0 开始),那自然会崩溃。
我们的读者里不乏正义之士,此时肯定要质疑,一个简单的数组越界访问,为何要直接让程序崩溃?是不是有些小题大作了?
如果有过 C 语言的经验,即使你越界了,问题不大,我依然尝试去访问,至于这个值是不是你想要的(100 号内存地址也有可能有值,只不过是其它变量或者程序的!),抱歉,不归我管,我只负责取,你要负责管理好自己的索引访问范围。上面这种情况被称为缓冲区溢出,并可能会导致安全漏洞,例如攻击者可以通过索引来访问到数组后面不被允许的数据。
说实话,我宁愿程序崩溃,为什么?当你取到了一个不属于你的值,这在很多时候会导致程序上的逻辑 BUG!
有编程经验的人都知道这种逻辑上的 BUG 是多么难被发现和修复!因此程序直接崩溃,然后告诉我们问题发生的位置,最后我们对此进行修复,这才是最合理的软件开发流程,而不是把问题藏着掖着:
thread 'main' panicked at 'index out of bounds: the len is 3 but the index is 99', src/main.rs:4:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
好的,现在成功知道问题发生的位置,但是如果我们想知道该问题之前经过了哪些调用环节,该怎么办?
那就按照提示使用 RUST_BACKTRACE=1 cargo run 或 $env:RUST_BACKTRACE=1 ; cargo run 来再一次运行程序:
Linux/macOS 等 UNIX 系统: RUST_BACKTRACE=1 cargo run
Windows 系统(PowerShell): $env:RUST_BACKTRACE=1 ; cargo run
要获取到栈回溯信息,你还需要开启 debug 标志,该标志在使用 cargo run 或者 cargo build 时自动开启(这两个操作默认是 Debug 运行方式)。同时,栈展开信息在不同操作系统或者 Rust 版本上也有所不同。
当出现 panic! 时,程序提供了两种方式来处理终止流程:栈展开和直接终止。
其中,默认的方式就是 栈展开,这意味着 Rust 会回溯栈上数据和函数调用,因此也意味着更多的善后工作,好处是可以给出充分的报错信息和栈调用信息,便于事后的问题复盘。直接终止,顾名思义,不清理数据就直接退出程序,善后工作交与操作系统来负责。
对于绝大多数用户,使用默认选择是最好的,但是当你关心最终编译出的二进制可执行文件大小时,那么可以尝试去使用直接终止的方式,例如下面的配置修改 Cargo.toml 文件,实现在 release 模式下遇到 panic 直接终止:
[profile.release]
panic = 'abort'
长话短说,如果是 main 线程,则程序会终止,如果是其它子线程,该线程会终止,但是不会影响 main 线程。
因此,尽量不要在 main 线程中做太多任务,将这些任务交由子线程去做,就算子线程 panic 也不会导致整个程序的结束。
当调用 panic! 宏时,它会 :
格式化 panic 信息,然后使用该信息作为参数,调用 std::panic::panic_any() 函数。
panic_any 会检查应用是否使用了 panic hook,如果使用了,该 hook 函数就会被调用(hook 是一个钩子函数,是外部代码设置的,用于在 panic 触发时,执行外部代码所需的功能)
当 hook 函数返回后,当前的线程就开始进行栈展开:从 panic_any 开始,如果寄存器或者栈因为某些原因信息错乱了,那很可能该展开会发生异常,最终线程会直接停止,展开也无法继续进行。
展开的过程是一帧一帧的去回溯整个栈,每个帧的数据都会随之被丢弃,但是在展开过程中,你可能会遇到被用户标记为 catching 的帧(通过 std::panic::catch_unwind() 函数标记),此时用户提供的 catch 函数会被调用,展开也随之停止:当然,如果 catch 选择在内部调用 std::panic::resume_unwind() 函数,则展开还会继续。
还有一种情况,在展开过程中,如果展开本身 panic 了,那展开线程会终止,展开也随之停止。
一旦线程展开被终止或者完成,最终的输出结果是取决于哪个线程 panic:对于 main 线程,操作系统提供的终止功能 core::intrinsics::abort() 会被调用,最终结束当前的 panic 进程;如果是其它子线程,那么子线程就会简单的终止,同时信息会在稍后通过 std::thread::join() 进行收集。